Before You Start
- In the following example, we demonstrate key package functionality using the test dataset that is included in the package
- You can follow along because all test data and associated CSV input files are contained in the package.
- Additional examples are also available under the [Example vignettes]tab
Components of the test dataset
- Paired-end short read amplicon data
- Files: S1_R1.fastq.gz, S1_R2.fastq.gz, S2_R1.fastq.gz,
S2_R1.fastq.gz
- The files must be zipped and end in either R1.fastq.gz , or R2.fastq.gz and each sample must have both R1 and R2 files.
- New row for each unique sample
- Samples entered twice if samples contain two pooled metabarcodes, as in the test data template
- New row for each unique barcode and associated primer sequence
- Optional cutadapt and DADA2 parameters
-
Taxonomy databases
- UNITE fungal database (abridged version)
- oomyceteDB
1. Format of the paired-end read files
- The package takes forward and reverse Illumina short read sequence data.
- Format of file names To avoid errors, the only characters that are acceptable in sample names are letters and numbers. Characters can be separated by underscores, but no other symbols. The files must end with the suffix R1.fastq.gz or R2.fastq.gz.
2. Format of metadata file
- The format of the CSV file named metadata.csv is
simple.
- A template is here.
- The only two required columns (with these headers)
are:
- Column 1. sample_name
- Column 2. primer_info
- Column 1. sample_name
Additional columns
- Other columns should be pasted after these two columns.
- They can be referenced later during the analysis steps and save a step of loading metadata later.
Notes
- S1 and S2 are come from a rhododendron rhizobiome dataset and are a
random subset of the full set of reads.
- S1 and S2 are included twice in the ‘metadata.csv’ sheet. This is
because these two samples contain pooled metabarcodes (ITS1 and
rps10).
- To demultiplex and run both analyses in tandem, include the same sample twice under sample_name, and then change the primer_name.
Here is what the metadata.csv looks like for this test dataset:
sample_name | primer_name | organism |
---|---|---|
S1 | rps10 | Cry |
S2 | rps10 | Cin |
S1 | its | Cry |
S2 | its | Cin |
3. Format of primer and parameters file
DADA2 Primer sequence information and user-defined parameters are placed in primerinfo_params.csv
To simplify how functions are called, user will provide parameters within this input file.
We recommend using the template linked here.
Remember to add any additional optional DADA2 parameters you want to use.
-
The only three required columns (with these headers) are:
- Column 1. sample_name
- Column 2. forward (primer sequence)
- Column 3. reverse(primer sequence)
primer_name | forward | reverse | already_trimmed | minCutadaptlength | multithread | verbose | maxN | maxEE_forward | maxEE_reverse | truncLen_forward | truncLen_reverse | truncQ | minLen | maxLen | minQ | trimLeft | trimRight | rm.lowcomplex | minOverlap | maxMismatch | min_asv_length |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
rps10 | GTTGGTTAGAGYARAAGACT | ATRYYTAGAAAGAYTYGAACT | FALSE | 100 | TRUE | FALSE | 1.00E+05 | 5 | 5 | 0 | 0 | 5 | 150 | Inf | 0 | 0 | 0 | 0 | 15 | 0 | 50 |
its | CTTGGTCATTTAGAGGAAGTAA | GCTGCGTTCTTCATCGATGC | FALSE | 50 | TRUE | FALSE | 1.00E+05 | 5 | 5 | 0 | 0 | 5 | 50 | Inf | 0 | 0 | 0 | 0 | 15 | 0 | 50 |
For more info on parameter specifics, see Documentation
4. Reference Database Format
- For now, the package is compatible with the following databases:
- oomycetedb from: https://grunwaldlab.github.io/OomyceteDB/
- SILVA 16S database with species assignments: https://www.arb-silva.de/
- UNITE fungal database from https://unite.ut.ee/repository.php
- A user can select up to two other databases, but will first need to
reformat headers exactly like the SILVA database headers.
- See more in the ‘Documentation’ tab.
- oomycetedb from: https://grunwaldlab.github.io/OomyceteDB/
Databases are downloaded from these sources and then placed in the from the user-specified data folder where raw data files and csv files are located.
Additional Notes
- Computer specifications may be a limiting factor.
- If you are using the SILVA or UNITE databases for taxonomic
assignment steps, an ordinary personal computer (unless it has
sufficient RAM) may not have enough memory for the taxonomic assignment
steps, even with few samples.
- The test databases and reads are subsetted and the following example
should run on a personal computer with at least 16 GB of RAM.
- If computer crashes during the taxonomic assignment step, you will
need to switch to a computer with sufficient memory.
- You must ensure that you have enough storage to save intermediate files in a temporary directory (default) or user-specified directory before proceeding.
Installation
Dependencies:
First install cutadapt program following the
instructions here: https://cutadapt.readthedocs.io/en/stable/installation.html
Let’s locate where the cutadapt executable is.
You must do this from a Terminal window:
#If you installed with pip or pipx, or homebrew, run this command from a Terminal window
which cutadapt
cutadapt --version
If you followed the cutadapt installation instructions to create a conda environment called cutadapt (change to whatever you named your environment), to install it in.
Open up a Terminal window and type these commands:
Second, make sure the following R packages are installed:
-
DADA2 (Latest version is 3.20)
- To install, follow these instructions: https://www.bioconductor.org/packages/release/bioc/html/dada2.html
- To install, follow these instructions: https://www.bioconductor.org/packages/release/bioc/html/dada2.html
- phyloseq
- metacoder (Available through CRAN)
To install the development version of package (while submission to CRAN is in progress):
#Here we install demulticoder (instructions will be updated once available through CRAN)
devtools::install_github("grunwaldlab/demulticoder")
library("demulticoder")
#Let's make sure other packages are loaded:
library("devtools")
library("dada2")
library("phyloseq")
library("metacoder")
Loading the Package
For now, the package will be loaded by retrieving it from GitHub. Submission to CRAN is in progress.
devtools::install_github("grunwaldlab/demulticoder")
library("demulticoder")
library("metacoder")
library("dplyr")
library("metacoder")
Reorganize data tables and set-up data directory structure
The sample names, primer sequences, and other metadata are reorganized in preparation for running Cutadapt to remove primers.
output<-prepare_reads(
data_directory = system.file("extdata", package = "demulticoder"),
output_directory = "~/demulticoder_test", #Run commands from a Terminal window",
overwrite_existing = TRUE)
Remove primers with Cutadapt
Before running Cutadapt, please ensure that you have installed it
cut_trim(
output,
cutadapt_path = "/usr/bin/cutadapt", #CHANGE LOCATION TO YOUR LOCAL INSTALLATION
overwrite_existing = TRUE)
#> Running Cutadapt 3.5 for its sequence data
#> Running Cutadapt 3.5 for rps10 sequence data
ASV inference step
Raw reads will be merged and ASVs will be inferred
make_asv_abund_matrix(
output,
overwrite_existing = TRUE)
#> 710804 total bases in 2694 reads from 2 samples will be used for learning the error rates.
#> Initializing error rates to maximum possible estimate.
#> selfConsist step 1 ..
#> selfConsist step 2
#> selfConsist step 3
#> Convergence after 3 rounds.
#> Error rate plot for the Forward read of primer pair its
#> Sample 1 - 1479 reads in 660 unique sequences.
#> Sample 2 - 1215 reads in 613 unique sequences.
#> 724230 total bases in 2694 reads from 2 samples will be used for learning the error rates.
#> Initializing error rates to maximum possible estimate.
#> selfConsist step 1 ..
#> selfConsist step 2
#> selfConsist step 3
#> Convergence after 3 rounds.
#> Error rate plot for the Reverse read of primer pair its
#> Sample 1 - 1479 reads in 1019 unique sequences.
#> Sample 2 - 1215 reads in 814 unique sequences.
#> 824778 total bases in 2935 reads from 2 samples will be used for learning the error rates.
#> Initializing error rates to maximum possible estimate.
#> selfConsist step 1 ..
#> selfConsist step 2
#> Convergence after 2 rounds.
#> Error rate plot for the Forward read of primer pair rps10
#> Sample 1 - 1429 reads in 933 unique sequences.
#> Sample 2 - 1506 reads in 1018 unique sequences.
#> 821851 total bases in 2935 reads from 2 samples will be used for learning the error rates.
#> Initializing error rates to maximum possible estimate.
#> selfConsist step 1 ..
#> selfConsist step 2
#> selfConsist step 3
#> Convergence after 3 rounds.
#> Error rate plot for the Reverse read of primer pair rps10
#> Sample 1 - 1429 reads in 1044 unique sequences.
#> Sample 2 - 1506 reads in 1284 unique sequences.
#> $its
#> [1] "/tmp/Rtmpb5UUUj/demulticoder_run/asvabund_matrixDADA2_its.RData"
#>
#> $rps10
#> [1] "/tmp/Rtmpb5UUUj/demulticoder_run/asvabund_matrixDADA2_rps10.RData"
Taxonomic assignment step
Using the core assignTaxonomy function from DADA2, taxonomic assignments will be given to ASVs.
assign_tax(
output,
asv_abund_matrix,
retrieve_files=TRUE,
overwrite_existing = TRUE)
#> samplename_barcode input filtered denoisedF denoisedR merged nonchim
#> 1 S1_R1_its 2564 1479 1425 1431 1315 1315
#> 2 S2_R1_its 1996 1215 1143 1122 1063 1063
#> samplename_barcode input filtered denoisedF denoisedR merged nonchim
#> 1 S1_R1_rps10 1830 1429 1429 1422 1420 1420
#> 2 S2_R1_rps10 2090 1506 1505 1505 1503 1503
Format of output matrices
- The default output is a CSV file per metabarcode with the inferred
ASVs and sequences, taxonomic assignments, and bootstrap supports
provided by DADA2. These data can then be used as input for downstream
steps.
- To view these files, locate the files with the prefix
final_asv_abundance_matrix in your specified output
directory.
- In this example, it will be in the home directory within demulticoder_test.
- You can then open your matrices using Excel
- We recommend checking the column with the ASV sequences to make sure there aren’t truncated sequences *It is important to also review the column showing the taxonomic assignments of each ASV and their associated bootstrap supports.
We can also load the matrices into our R environment and view then from R Studio.
We do that here with the rps10 matrix
rps10_matrix<-read.csv("~/demulticoder_test/final_asv_abundance_matrix_rps10.csv", header=TRUE)
head(rps10_matrix)
#> asv_id
#> 1 asv_1
#> 2 asv_2
#> 3 asv_3
#> 4 asv_4
#> 5 asv_5
#> sequence
#> 1 GAAAATCTTTGTGTCGGTGGTTCAAATCCACCTCCAGACAAATTAATTTTTTAAAACTTATGTTTATATTAAGAATTACATTTAAATCTATTAAAAAAATAAATAACATTAAACCTATTTTATTAAATCAAAAAAATTTAAATAAATTTAATAATATTAAAATAAATGGAATATTTAAAACAAAAAATAAAAATAAAATTTTTACAGTATTAAAATCACCACATGTTAATAAAAAAGCACGTGAACATTTTATTTATAAAAATTTTACACAAAAAGTTGAAATTAAATGTTTAAATATTTTTCAATTATTAAATTTTTTAATTTTGATTAAAAAAATCTTAACAGAAAATTTTATTATTACTACAAAAATAATTAAACAATAATTAATATATGCTTATAGCTTAATGGATAAAGCATTAGATTGCGGATCTACAAAATGAA
#> 2 GAAAATCTTTGTGTCGGTGGTTCAAGTCCGCCTCCAAACATCTTATAAAAATGTATGTATATTTTACGAATTAGTTTTAAATCAGTAGAAAAAATAAATGAATTAAAAAAAAATATCTCAAAAATAAAAAAAATATATAATTTTAAAAATTTAAAAGTAAATGGTATTTTTAGAACAAAAAATAAAAATAAAATTTTTACATTATTAAAATCACCCCATGTTAATAAAAAATCACGTGAACATTTTATATATAAAAATTATATTCAAAAAATTGATTTAAATTTTTCAAATTTTTTTCAATTATTAAATTTTTTAGTAATTTTAAAAAAAATATTATCTAAAGATTTTTTAATCAATATCAAAATTATTAAAAAAAATAAAAAAAATATGCTTATAGCTTAATGGATAAAGCGTTAGATTGCGGATCTATAAAATGAA
#> 3 GAAAATCTTTGTGTCGGTGGTTCAAGTCCACCTCCAGACAAAAATAATAACTATGTATATTTTAAGAATAACTTTTAAATCAATACAAAAAATAAATAATATTAAAAAAAATTTATTAAAATTAAAAAAAATAAATAAATTTAAAAATATTCAAATAAAAGGAATATTTAAAATAAAAGATAAAAATAAAATTTTTACTTTATTAAAATCACCTCACGTAAATAAAAAATCTCGTGAACATTTTATTTATAAAAATTATACTCAAAAAATAGATGTAAAATTTTCAAATATTATTGAATTATTTAATTTTATAATACTTATTAAAAAAGTTTTAACTAAAAATTTTATAATAAATTTTAAAATTATAAAATATAATAAAAAAAAAATGCTTATAGCTTAATGGATAAAGCGTTAGATTGCGGATCTATAAAATGAA
#> 4 GAAAATCTTTGTGTCGGTGGTTCAAATCCGCCTCCAAACAAAAATATAAATTATTTTATATGTATATTTTAAGAATAAGTTTTAAATCTGTATCAAAAATAGATAAAATTAAAAAAGAATTATCAAGATTAAAAAAAATATATAATTTTAAAAATATAACAATTAATGGTATTTTTAAAACAAAAAATAAAGATAAAATTTTTACATTATTAAAATCACCTCATGTTAATAAAAAATCTCGCGAACATTTTATTTATAAAAATTATGTACAAAAAATAGATTTAAATTTTATTAATATTTTTCAATTAATAAATTTTTTAATAATTTTAAAAAAAAAATTATCAAAAAATGTATTAATAAATGTAAAAATAATTAAAAAATAAAAAAATATGCTTATAGCTTAATGGATAAAGCGTTAGATTGCGGATCTATAAAATGAA
#> 5 GAAAATCTTTGTGTCGGTGGTTCAAGTCCGCCTCCAAACATCTTATAAAAATGTATGTATATTTTACGAATTAGTTTTAAATCAGTAGAAAAAATAAATGAATTAAAAAAAAATATCTCAAAAATAAAAAAAATATATAATTTTAAAAATTTAAAAGTAAAATGGTATTTTTAGAACAAAAAATAAAAATAAAATTTTTACATTATTAAAATCACCCCATGTTAATAAAAAATCACGTGAACATTTTATATATAAAAATTATATTCAAAAAATTGATTTAAATTTTTCAAATTTTTTTCAATTATTAAATTTTTTAGTAATTTTAAAAAAAACATTATCTAAAGATTTTTTAATCAATATTAAAATTATTAAAAAAAATAAAAAAATATGCTTATAGCTTAATGGATAAAGCGTTAGATTGCGGATCTATAAAATGAA
#> dada2_tax
#> 1 Stramenopila--100--Kingdom;Oomycota--100--Phylum;Oomycetes--100--Class;Peronosporales--26--Order;Peronosporaceae--26--Family;Phytophthora--23--Genus;Phytophthora_sp.kununurra--13--Species;oomycetedb_650--13--Reference
#> 2 Stramenopila--100--Kingdom;Oomycota--100--Phylum;Oomycetes--100--Class;Pythiales--100--Order;Pythiaceae--100--Family;Pythium--100--Genus;Pythium_dissotocum--55--Species;oomycetedb_749--26--Reference
#> 3 Stramenopila--100--Kingdom;Oomycota--100--Phylum;Oomycetes--100--Class;Pythiales--100--Order;Pythiaceae--100--Family;Globisporangium--100--Genus;Globisporangium_cylindrosporum--26--Species;oomycetedb_41--26--Reference
#> 4 Stramenopila--100--Kingdom;Oomycota--100--Phylum;Oomycetes--100--Class;Pythiales--94--Order;Pythiaceae--94--Family;Pythium--89--Genus;Pythium_aphanidermatum--19--Species;oomycetedb_727--19--Reference
#> 5 Stramenopila--100--Kingdom;Oomycota--100--Phylum;Oomycetes--100--Class;Pythiales--100--Order;Pythiaceae--100--Family;Pythium--100--Genus;Pythium_oopapillum--69--Species;oomycetedb_771--69--Reference
#> S1_rps10 S2_rps10
#> 1 842 17
#> 2 578 220
#> 3 0 587
#> 4 0 516
#> 5 0 163
We can also inspect the first rows of the ITS1 matrix
its_matrix<-read.csv("~/demulticoder_test/final_asv_abundance_matrix_its.csv", header=TRUE)
head(its_matrix)
#> asv_id
#> 1 asv_1
#> 2 asv_2
#> 3 asv_3
#> 4 asv_4
#> 5 asv_5
#> 6 asv_6
#> sequence
#> 1 AAAAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTAGTGAATCTTCAAAGTCGGCTCGTCAGATTGTGCTGGTGGAGACACATGTGCACGTCTACGAGTCGCAAACCCACACACCTGTGCATCTATGACTCTGAGTGCCGCTTTGCATGGCCCCTTGATTTGGGCCTGGCGCTCGAGTACTTTCACACACTCTCGAATGTAATGGAATGTCTTCTTGTGCATAACGTACAAACAGAAACAACTTTCAACAACGGATCTCTTGGCTCTC
#> 2 AAAAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTAGTGAATCTTCAAAGTCGGCTCGTCGGATTGTGCTGGTGGAGACACATGTGCACGTCTACGAGTCGCAAACCCACACACCTGTGCATCTATGACTCTGAGTGCCGCTTTGCATGGCCCCTTGATTTGGGCCTGGCGCTCGAGTACTTTCACACACTCTCGAATGTAATGGAATGTCTTGTTGTGCATAACGTACAAACAGAAACAACTTTCAACAACGGATCTCTTGGCTCTC
#> 3 AAAAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTAGTGAATCTTCAAAGTCGGCTCGTCGGATTGTGCTGGTGGAGACACATGTGCACGTCTACGAGTCGCAAACCCACACACCTGTGCATCTATGACTCTGAGTGCCGCTTTGCATGGCCCCTTGATTTGGGCCTGGCGCTCGAGTACTTTCACACACTCTCGAATGTAATGGAATGACTTGTTGTGCATAACGTACAAACAGAAACAACTTTCAACAACGGATCTCTTGGCTCTC
#> 4 AAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTAACGAGTTCAACTGGGGTCTGTGGGGATTCGATGCTGGCCTCCGGGCATGTGCTCGTCCCCCGGACCTCACATCCACTCACAACCCCTGTGCATCATGAGAGGTGTGGTCCTCCGTCATGGGAGCAGCTCCCCTCCGGGCGTGTTTGTACACCCCGGGCGGTCGAGCCGGGACTGCACTTCGACGCCTTTACACAAACCTTTGAATCAGTGATGTAGAATGTCATGGCCAGCGATGGTCGAACTTTAAATACAACTTTCAACAACGGATCTCTTGGCTCTC
#> 5 AAAAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTAGTGAATCTTCAAAGTCGGCTCGTCGGATTGTGCTGGTGGAGACACATGTGCACATCTACGAGTCGCAAACCCACACACCTGTGCATCTATGACTCTGAGTGCCGCTTTGCATGGCCCCTTGATTTGGGCCTGGCGCTCGAGTACTTTCACACACTCTCGAATGTAATGGAATGTCTTGTTGTGCATAACGTACAAACAGAAACAACTTTCAACAACGGATCTCTTGGCTCTC
#> 6 AAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTAAAAATGAAGCCGGGAAACCGGTCCTTCTAACCCTTGATTATCTTAATTTGTTGCTTTGGTGGGCCGCGCAAGCACCGGCTTCGGCTGGATCGTGCCCGCCAGAGGACCACAACTCTGTATCAAATGTCGTCTGAGTACTATATAATAGTTAAAACTTTCAACAACGGATCTCTTGGTTCTG
#> dada2_tax
#> 1 Fungi--100--Kingdom;Basidiomycota--100--Phylum;Agaricomycetes--100--Class;Sebacinales--100--Order;unidentified--98--Family;unidentified--98--Genus;Sebacinales_sp--98--Species
#> 2 Fungi--100--Kingdom;Basidiomycota--100--Phylum;Agaricomycetes--100--Class;Sebacinales--100--Order;unidentified--97--Family;unidentified--97--Genus;Sebacinales_sp--97--Species
#> 3 Fungi--100--Kingdom;Basidiomycota--100--Phylum;Agaricomycetes--100--Class;Sebacinales--100--Order;unidentified--99--Family;unidentified--99--Genus;Sebacinales_sp--99--Species
#> 4 Fungi--100--Kingdom;Basidiomycota--62--Phylum;Agaricomycetes--59--Class;Hymenochaetales--21--Order;Repetobasidiaceae--8--Family;Rickenella--8--Genus;Rickenella_sp--8--Species
#> 5 Fungi--100--Kingdom;Basidiomycota--100--Phylum;Agaricomycetes--100--Class;Sebacinales--100--Order;unidentified--96--Family;unidentified--96--Genus;Sebacinales_sp--96--Species
#> 6 Fungi--100--Kingdom;Ascomycota--100--Phylum;Leotiomycetes--98--Class;Helotiales--98--Order;unidentified--86--Family;unidentified--86--Genus;Helotiales_sp--86--Species
#> S1_its S2_its
#> 1 436 0
#> 2 405 0
#> 3 0 299
#> 4 209 65
#> 5 0 200
#> 6 16 116
Reformat ASV matrix as taxmap and phyloseq objects after optional filtering of low abundance ASVs
objs<-convert_asv_matrix_to_objs(output, minimum_bootstrap = 0, save_outputs = TRUE)
Objects can now be used for downstream data analysis
Here we make heattrees using taxmap object.
First we make a heat tree to examine fungal community composition using our ITS1 data.
objs$taxmap_its %>%
filter_taxa(! grepl(x = taxon_names, "NA", ignore.case = TRUE)) %>%
metacoder::heat_tree(node_label = taxon_names,
node_size = n_obs,
node_color = n_obs,
node_color_axis_label = "ASV count",
node_size_axis_label = "Total Abundance of Taxa",
layout = "da", initial_layout = "re")
Now we make a heat tree to showcase oomycete community composition using our rps10 data
objs$taxmap_rps10 %>%
filter_taxa(! grepl(x = taxon_names, "NA", ignore.case = TRUE)) %>%
metacoder::heat_tree(node_label = taxon_names,
node_size = n_obs,
node_color = n_obs,
node_color_axis_label = "ASV count",
node_size_axis_label = "Total Abundance of Taxa",
layout = "da", initial_layout = "re")
We can also do a variety of analyses, if we convert to phyloseq object
Here we demonstrate how to make a stacked bar plot of the relative abundance of taxa by sample for the ITS1-barcoded samples
data <- objs$phyloseq_its %>%
phyloseq::transform_sample_counts(function(x) {x/sum(x)} ) %>%
phyloseq::psmelt() %>%
dplyr::filter(Abundance > 0.02) %>%
dplyr::arrange(Genus)
abund_plot <- ggplot2::ggplot(data, ggplot2::aes(x = Sample, y = Abundance, fill = Genus)) +
ggplot2::geom_bar(stat = "identity", position = "stack", color = "black", size = 0.2) +
ggplot2::scale_fill_viridis_d() +
ggplot2::theme_minimal() +
ggplot2::labs(
y = "Relative Abundance",
title = "Relative abundance of taxa by sample",
fill = "Genus"
) +
ggplot2::theme(
axis.text.x = ggplot2::element_text(angle = 90, hjust = 1, vjust = 0.5, size = 14),
panel.grid.major = ggplot2::element_blank(),
panel.grid.minor = ggplot2::element_blank(),
legend.position = "top",
legend.text = ggplot2::element_text(size = 14),
legend.title = ggplot2::element_text(size = 14),
strip.text = ggplot2::element_text(size = 14),
strip.background = ggplot2::element_blank()
) +
ggplot2::guides(
fill = ggplot2::guide_legend(
reverse = TRUE,
keywidth = 1,
keyheight = 1,
title.position = "top",
title.hjust = 0.5, # Center the legend title
label.theme = ggplot2::element_text(size = 10)
)
)
print(abund_plot)
Finally, we demonstrate how to make a stacked bar plot of the relative abundance of taxa by sample for the rps10-barcoded samples
data <- objs$phyloseq_rps10 %>%
phyloseq::transform_sample_counts(function(x) {x/sum(x)} ) %>%
phyloseq::psmelt() %>%
dplyr::filter(Abundance > 0.02) %>%
dplyr::arrange(Genus)
abund_plot <- ggplot2::ggplot(data, ggplot2::aes(x = Sample, y = Abundance, fill = Genus)) +
ggplot2::geom_bar(stat = "identity", position = "stack", color = "black", size = 0.2) +
ggplot2::scale_fill_viridis_d() +
ggplot2::theme_minimal() +
ggplot2::labs(
y = "Relative Abundance",
title = "Relative abundance of taxa by sample",
fill = "Genus"
) +
ggplot2::theme(
axis.text.x = ggplot2::element_text(angle = 90, hjust = 1, vjust = 0.5, size = 14),
panel.grid.major = ggplot2::element_blank(),
panel.grid.minor = ggplot2::element_blank(),
legend.position = "top",
legend.text = ggplot2::element_text(size = 14),
legend.title = ggplot2::element_text(size = 14), # Adjust legend title size
strip.text = ggplot2::element_text(size = 14),
strip.background = ggplot2::element_blank()
) +
ggplot2::guides(
fill = ggplot2::guide_legend(
reverse = TRUE,
keywidth = 1,
keyheight = 1,
title.position = "top",
title.hjust = 0.5, # Center the legend title
label.theme = ggplot2::element_text(size = 10) # Adjust the size of the legend labels
)
)
print(abund_plot)