This function will perform the index of association on a bootstrapped data set multiple times to create a distribution, showing the variation of the index due to repeat observations.
Arguments
- gid
a genind or genclone object
- how
method of bootstrap. The default
how = "partial"
will include all the unique genotypes and sample with replacement from the unique genotypes until the total number of individuals has been reached. Usinghow = "full"
will randomly sample with replacement from the data as it is. Usinghow = "psex"
will sample from the full data set after first weighting the samples via the probability of encountering the nth occurence of a particular multilocus genotype. Seepsex()
for details.- reps
an integer specifying the number of replicates to perform. Defaults to 999.
- quiet
a logical. If
FALSE
, a progress bar will be displayed. IfTRUE
, the progress bar is suppressed.- ...
options passed on to
psex()
Value
a data frame with the index of association and standardized index of association in columns. Number of rows represents the number of reps.
Examples
data(Pinf)
boot.ia(Pinf, reps = 99)
#> Ia rbarD
#> 1 0.6002580 0.06570511
#> 2 0.4958295 0.05426157
#> 3 0.5040736 0.05519292
#> 4 0.5286633 0.05798116
#> 5 0.5241143 0.05612128
#> 6 0.6025007 0.06580468
#> 7 0.5427107 0.05809528
#> 8 0.5295282 0.05775142
#> 9 0.5690735 0.06229472
#> 10 0.5060795 0.05534120
#> 11 0.5493813 0.06002754
#> 12 0.4331423 0.04727976
#> 13 0.5142747 0.05601795
#> 14 0.4671624 0.05128045
#> 15 0.5471555 0.05976389
#> 16 0.4352443 0.04768930
#> 17 0.5823540 0.06353523
#> 18 0.5256486 0.05740967
#> 19 0.6187546 0.06792873
#> 20 0.6349551 0.06971666
#> 21 0.4669628 0.05111945
#> 22 0.5604240 0.06108168
#> 23 0.6097946 0.06671314
#> 24 0.5290542 0.05790792
#> 25 0.4749155 0.05211690
#> 26 0.5856122 0.06403715
#> 27 0.5270459 0.05775218
#> 28 0.6348331 0.06955090
#> 29 0.6060745 0.06654738
#> 30 0.5416509 0.05911961
#> 31 0.5248975 0.05738266
#> 32 0.4922804 0.05321494
#> 33 0.5185133 0.05669959
#> 34 0.5807863 0.06354870
#> 35 0.5027411 0.05421811
#> 36 0.6143366 0.06635778
#> 37 0.5563455 0.06070333
#> 38 0.5173705 0.05686342
#> 39 0.4867296 0.05307533
#> 40 0.5124420 0.05611800
#> 41 0.7172388 0.07865902
#> 42 0.5736556 0.06295393
#> 43 0.5245316 0.05754646
#> 44 0.5031980 0.05511553
#> 45 0.5382812 0.05795169
#> 46 0.5542815 0.06065684
#> 47 0.4852969 0.05231277
#> 48 0.4738652 0.05178777
#> 49 0.4315105 0.04723402
#> 50 0.5923166 0.06494469
#> 51 0.5059820 0.05447639
#> 52 0.5133417 0.05549737
#> 53 0.5254167 0.05654974
#> 54 0.5766823 0.06338089
#> 55 0.5025817 0.05514337
#> 56 0.5139941 0.05618946
#> 57 0.5161934 0.05652557
#> 58 0.5746393 0.06297153
#> 59 0.5091208 0.05486803
#> 60 0.4884879 0.05281537
#> 61 0.6720210 0.07379432
#> 62 0.5621772 0.06109905
#> 63 0.4760382 0.05228237
#> 64 0.6648355 0.07286684
#> 65 0.5711334 0.06254289
#> 66 0.6240231 0.06736972
#> 67 0.5436718 0.05850436
#> 68 0.4901846 0.05355016
#> 69 0.5032063 0.05448991
#> 70 0.4464114 0.04880341
#> 71 0.4930172 0.05376145
#> 72 0.5378966 0.05859557
#> 73 0.5147597 0.05646401
#> 74 0.4946656 0.05373510
#> 75 0.5870128 0.06433058
#> 76 0.5051534 0.05503404
#> 77 0.6236030 0.06833563
#> 78 0.6127467 0.06632493
#> 79 0.5029579 0.05537807
#> 80 0.5083594 0.05575167
#> 81 0.5488711 0.05898251
#> 82 0.5707142 0.06218573
#> 83 0.6368270 0.06819685
#> 84 0.5291682 0.05804471
#> 85 0.5309435 0.05676489
#> 86 0.5049886 0.05529050
#> 87 0.5475800 0.05964201
#> 88 0.5744172 0.06277506
#> 89 0.5308597 0.05806689
#> 90 0.4086050 0.04413402
#> 91 0.5040869 0.05497732
#> 92 0.4906139 0.05355686
#> 93 0.5411727 0.05906306
#> 94 0.5249584 0.05750165
#> 95 0.5372819 0.05885665
#> 96 0.5068366 0.05533622
#> 97 0.5350064 0.05809123
#> 98 0.5663300 0.06214449
#> 99 0.4980202 0.05424621