This function will perform the index of association on a bootstrapped data set multiple times to create a distribution, showing the variation of the index due to repeat observations.
Arguments
- gid
a genind or genclone object
- how
method of bootstrap. The default
how = "partial"
will include all the unique genotypes and sample with replacement from the unique genotypes until the total number of individuals has been reached. Usinghow = "full"
will randomly sample with replacement from the data as it is. Usinghow = "psex"
will sample from the full data set after first weighting the samples via the probability of encountering the nth occurence of a particular multilocus genotype. Seepsex()
for details.- reps
an integer specifying the number of replicates to perform. Defaults to 999.
- quiet
a logical. If
FALSE
, a progress bar will be displayed. IfTRUE
, the progress bar is suppressed.- ...
options passed on to
psex()
Value
a data frame with the index of association and standardized index of association in columns. Number of rows represents the number of reps.
Examples
data(Pinf)
boot.ia(Pinf, reps = 99)
#> Ia rbarD
#> 1 0.4819019 0.05194235
#> 2 0.6471303 0.07089416
#> 3 0.5075382 0.05548256
#> 4 0.4484793 0.04779991
#> 5 0.4723701 0.05180478
#> 6 0.5795416 0.06215560
#> 7 0.6201807 0.06798984
#> 8 0.5199299 0.05675760
#> 9 0.5554505 0.06058716
#> 10 0.5996637 0.06538732
#> 11 0.5989807 0.06480046
#> 12 0.5095099 0.05555006
#> 13 0.5304545 0.05815529
#> 14 0.5448810 0.05946702
#> 15 0.5558104 0.06089201
#> 16 0.5105514 0.05586222
#> 17 0.5018430 0.05481066
#> 18 0.4981589 0.05440054
#> 19 0.5492266 0.05985564
#> 20 0.6106282 0.06596382
#> 21 0.4955819 0.05407274
#> 22 0.5957244 0.06530788
#> 23 0.4660049 0.05091427
#> 24 0.5924443 0.06467981
#> 25 0.6357892 0.06990272
#> 26 0.6097687 0.06713849
#> 27 0.4804808 0.05260730
#> 28 0.5917740 0.06472826
#> 29 0.5760935 0.06316190
#> 30 0.5506424 0.06025225
#> 31 0.4829750 0.05206509
#> 32 0.5844528 0.06411806
#> 33 0.5152625 0.05615920
#> 34 0.4324953 0.04714766
#> 35 0.4456071 0.04864187
#> 36 0.4670333 0.05109920
#> 37 0.5668780 0.06208478
#> 38 0.6399688 0.07008245
#> 39 0.7040248 0.07722015
#> 40 0.5463752 0.05906408
#> 41 0.5964468 0.06562497
#> 42 0.5860739 0.06409211
#> 43 0.5748121 0.06292909
#> 44 0.5079590 0.05481726
#> 45 0.5288720 0.05788804
#> 46 0.5471259 0.06000560
#> 47 0.5485903 0.06011772
#> 48 0.5127772 0.05628946
#> 49 0.5009626 0.05485145
#> 50 0.6240469 0.06839995
#> 51 0.5739781 0.06284737
#> 52 0.4804929 0.05207227
#> 53 0.4706100 0.05074339
#> 54 0.5848158 0.06333332
#> 55 0.6571567 0.07197002
#> 56 0.5469144 0.05948287
#> 57 0.5537667 0.05977034
#> 58 0.4502435 0.04824133
#> 59 0.5026848 0.05503491
#> 60 0.5180611 0.05668011
#> 61 0.5486374 0.05877376
#> 62 0.5414529 0.05932712
#> 63 0.5713421 0.06249268
#> 64 0.4346541 0.04754724
#> 65 0.5747481 0.06132894
#> 66 0.5696405 0.06212929
#> 67 0.5047758 0.05518573
#> 68 0.5197619 0.05689543
#> 69 0.4612496 0.04921734
#> 70 0.6133986 0.06618885
#> 71 0.5100138 0.05572065
#> 72 0.5181444 0.05652484
#> 73 0.5223402 0.05710837
#> 74 0.5856362 0.06410488
#> 75 0.4882622 0.05356209
#> 76 0.6005801 0.06557054
#> 77 0.5169951 0.05652175
#> 78 0.4195476 0.04593809
#> 79 0.5202460 0.05698222
#> 80 0.5581146 0.06114942
#> 81 0.4827087 0.05264719
#> 82 0.5238842 0.05744573
#> 83 0.6006422 0.06586924
#> 84 0.4537650 0.04884950
#> 85 0.5718191 0.06235611
#> 86 0.4802257 0.05260593
#> 87 0.4711562 0.05155444
#> 88 0.5366242 0.05882522
#> 89 0.6795960 0.07296641
#> 90 0.5174513 0.05657002
#> 91 0.5505765 0.06013948
#> 92 0.4696297 0.05137168
#> 93 0.5595995 0.06124075
#> 94 0.4504844 0.04923967
#> 95 0.4512368 0.04942074
#> 96 0.4494671 0.04883154
#> 97 0.5624981 0.06171292
#> 98 0.6124019 0.06690649
#> 99 0.4900166 0.05284311